Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
BMC Genomics ; 25(1): 274, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475714

RESUMO

BACKGROUND: Tuber starch and steroidal glycoalkaloid (SGA)-related traits have been consistently prioritized in potato breeding, while allelic variation pattern of genes that underlie these traits is less explored. RESULTS: Here, we focused on the genes involved in two important metabolic pathways in the potato: starch metabolism and SGA biosynthesis. We identified 119 genes consisting of 81 involved in starch metabolism and 38 in the biosynthesis of steroidal glycoalkaloids, and discovered 96,166 allelic variants among 2,169 gene haplotypes in six autotetraploid potato genomes. Comparative analyses revealed an uneven distribution of allelic variants among gene haplotypes and that the vast majority of deleterious mutations in these genes are retained in heterozygous state in the autotetraploid potato genomes. Leveraging full-length cDNA sequencing data, we find that approximately 70% of haplotypes of the 119 genes are transcribable. Population genetic analyses identify starch and SGA biosynthetic genes that are potentially conserved or diverged between potato varieties with varying starch or SGA content. CONCLUSIONS: These results deepen the understanding of haplotypic diversity within functionally important genes in autotetraploid genomes and may facilitate functional characterization of genes or haplotypes contributing to traits related to starch and SGA in potato.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Amido/metabolismo , Melhoramento Vegetal , Alelos , Fenótipo , Esteroides
2.
Trends Plant Sci ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38368122

RESUMO

The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.

3.
New Phytol ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197194

RESUMO

In potato, maturity is assessed by leaf senescence, which, in turn, affects yield and tuber quality traits. Previously, we showed that the CYCLING DOF FACTOR1 (StCDF1) locus controls leaf maturity in addition to the timing of tuberization. Here, we provide evidence that StCDF1 controls senescence onset separately from senescence progression and the total life cycle duration. We used molecular-biological approaches (DNA-Affinity Purification Sequencing) to identify a direct downstream target of StCDF1, named ORESARA1 (StORE1S02), which is a NAC transcription factor acting as a positive senescence regulator. By overexpressing StORE1S02 in the long life cycle genotype, early onset of senescence was shown, but the total life cycle remained long. At the same time, StORE1S02 knockdown lines have a delayed senescence onset. Furthermore, we show that StORE1 proteins play an indirect role in sugar transport from source to sink by regulating expression of SWEET sugar efflux transporters during leaf senescence. This study clarifies the important link between tuber formation and senescence and provides insight into the molecular regulatory network of potato leaf senescence onset. We propose a complex role of StCDF1 in the regulation of potato plant senescence.

5.
STAR Protoc ; 4(4): 102577, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37733594

RESUMO

Protein-protein interactions (PPIs) in crop plants remain largely unexplored. Here, we provide a protocol for identifying PPIs in potato (Solanum tuberosum) using TurboID-mediated proximity labeling. We transiently expressed constructs for a nucleus-located transcription factor and a plasma membrane-localized receptor-like kinase fused to TurboID to identify PPIs in potato leaves. We describe the plasmid construction, plant material, agroinfiltration, biotin treatment, protein isolation, free biotin removal, western blot analysis, and enrichment of biotinylated proteins for mass spectrometry analysis.


Assuntos
Mapas de Interação de Proteínas , Solanum tuberosum , Solanum tuberosum/genética , Biotina , Plantas , Fatores de Transcrição
6.
Mol Plant ; 15(7): 1211-1226, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35733345

RESUMO

Potato (Solanum tuberosum) is the most consumed non-cereal food crop. Most commercial potato cultivars are autotetraploids with highly heterozygous genomes, severely hampering genetic analyses and improvement. By leveraging the state-of-the-art sequencing technologies and polyploid graph binning, we achieved a chromosome-scale, haplotype-resolved genome assembly of a cultivated potato, Cooperation-88 (C88). Intra-haplotype comparative analyses revealed extensive sequence and expression differences in this tetraploid genome. We identified haplotype-specific pericentromeres on chromosomes, suggesting a distinct evolutionary trajectory of potato homologous centromeres. Furthermore, we detected double reduction events that are unevenly distributed on haplotypes in 1021 of 1034 selfing progeny, a feature of autopolyploid inheritance. By distinguishing maternal and paternal haplotype sets in C88, we simulated the origin of heterosis in cultivated tetraploid with a survey of 3110 tetra-allelic loci with deleterious mutations, which were masked in the heterozygous condition by two parents. This study provides insights into the genomic architecture of autopolyploids and will guide their breeding.


Assuntos
Solanum tuberosum , Haplótipos , Melhoramento Vegetal , Poliploidia , Solanum tuberosum/genética , Tetraploidia
7.
Mol Plant ; 15(3): 520-536, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35026436

RESUMO

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder's efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.


Assuntos
Solanum tuberosum , Tetraploidia , Alelos , Cromossomos , Melhoramento Vegetal , Proteoma/genética , Solanum tuberosum/genética , Transcriptoma/genética
8.
Nat Commun ; 12(1): 4141, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230471

RESUMO

Genetic gain in potato is hampered by the heterozygous tetraploid genome of cultivated potato. Converting potato into a diploid inbred-line based F1-hybrid crop provides a promising route towards increased genetic gain. The introduction of a dominant S-locus inhibitor (Sli) gene into diploid potato germplasm allows efficient generation of self-fertilized seeds and thus the development of potato inbred lines. Little is known about the structure and function of the Sli locus. Here we describe the mapping of Sli to a 12.6 kb interval on chromosome 12 using a recombinant screen approach. One of two candidate genes present in this interval shows a unique sequence that is exclusively present in self-compatible lines. We describe an expression vector that converts self-incompatible genotypes into self-compatible and a CRISPR-Cas9 vector that converts SC genotypes into SI. The Sli gene encodes an F-box protein that is specifically expressed in pollen from self-compatible plants. A 533 bp insertion in the promotor of that gene leads to a gain of function mutation, which overcomes self-pollen rejection.


Assuntos
Genes de Plantas/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Solanum tuberosum/genética , Sistemas CRISPR-Cas , Mapeamento Cromossômico , Cromossomos de Plantas , Diploide , Genótipo , Heterozigoto , Magnoliopsida , Pólen/genética , Sementes/metabolismo , Autoincompatibilidade em Angiospermas/genética
9.
BMC Plant Biol ; 21(1): 198, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33894758

RESUMO

BACKGROUND: Scientific literature carries a wealth of information crucial for research, but only a fraction of it is present as structured information in databases and therefore can be analyzed using traditional data analysis tools. Natural language processing (NLP) is often and successfully employed to support humans by distilling relevant information from large corpora of free text and structuring it in a way that lends itself to further computational analyses. For this pilot, we developed a pipeline that uses NLP on biological literature to produce knowledge networks. We focused on the flesh color of potato, a well-studied trait with known associations, and we investigated whether these knowledge networks can assist us in formulating new hypotheses on the underlying biological processes. RESULTS: We trained an NLP model based on a manually annotated corpus of 34 full-text potato articles, to recognize relevant biological entities and relationships between them in text (genes, proteins, metabolites and traits). This model detected the number of biological entities with a precision of 97.65% and a recall of 88.91% on the training set. We conducted a time series analysis on 4023 PubMed abstract of plant genetics-based articles which focus on 4 major Solanaceous crops (tomato, potato, eggplant and capsicum), to determine that the networks contained both previously known and contemporaneously unknown leads to subsequently discovered biological phenomena relating to flesh color. A novel time-based analysis of these networks indicates a connection between our trait and a candidate gene (zeaxanthin epoxidase) already two years prior to explicit statements of that connection in the literature. CONCLUSIONS: Our time-based analysis indicates that network-assisted hypothesis generation shows promise for knowledge discovery, data integration and hypothesis generation in scientific research.


Assuntos
Mineração de Dados , Processamento de Linguagem Natural , Tubérculos/fisiologia , Solanum tuberosum/fisiologia , Cor , Pigmentos Biológicos
10.
Plant Cell Environ ; 44(3): 792-806, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314152

RESUMO

Yield of harvestable plant organs depends on photosynthetic assimilate production in source leaves, long-distance sucrose transport and sink-strength. While photosynthesis optimization has received considerable interest for optimizing plant yield, the potential for improving long-distance sucrose transport has received far less attention. Interestingly, a recent potato study demonstrates that the tuberigen StSP6A binds to and reduces activity of the StSWEET11 sucrose exporter. While the study suggested that reducing phloem sucrose efflux may enhance tuber yield, the precise mechanism and physiological relevance of this effect remained an open question. Here, we develop the first mechanistic model for sucrose transport, parameterized for potato plants. The model incorporates SWEET-mediated sucrose export, SUT-mediated sucrose retrieval from the apoplast and StSP6A-StSWEET11 interactions. Using this model, we were able to substantiate the physiological relevance of the StSP6A-StSWEET11 interaction in the long-distance phloem for potato tuber yield, as well as to show the non-linear nature of this effect.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Sacarose/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Modelos Biológicos , Floema/fisiologia , Proteínas de Plantas/fisiologia , Solanum tuberosum/fisiologia
11.
Plant J ; 105(4): 855-869, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33220113

RESUMO

Plants regulate their reproductive cycles under the influence of environmental cues, such as day length, temperature and water availability. In Solanum tuberosum (potato), vegetative reproduction via tuberization is known to be regulated by photoperiod, in a very similar way to flowering. The central clock output transcription factor CYCLING DOF FACTOR 1 (StCDF1) was shown to regulate tuberization. We now show that StCDF1, together with a long non-coding RNA (lncRNA) counterpart, named StFLORE, also regulates water loss through affecting stomatal growth and diurnal opening. Both natural and CRISPR-Cas9 mutations in the StFLORE transcript produce plants with increased sensitivity to water-limiting conditions. Conversely, elevated expression of StFLORE, both by the overexpression of StFLORE or by the downregulation of StCDF1, results in an increased tolerance to drought through reducing water loss. Although StFLORE appears to act as a natural antisense transcript, it is in turn regulated by the StCDF1 transcription factor. We further show that StCDF1 is a non-redundant regulator of tuberization that affects the expression of two other members of the potato StCDF gene family, as well as StCO genes, through binding to a canonical sequence motif. Taken together, we demonstrate that the StCDF1-StFLORE locus is important for vegetative reproduction and water homeostasis, both of which are important traits for potato plant breeding.


Assuntos
Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Solanum tuberosum/metabolismo , Fatores de Transcrição/metabolismo , Adaptação Fisiológica , Desidratação , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Tubérculos/metabolismo , Tubérculos/fisiologia , Regiões Promotoras Genéticas , RNA Antissenso/metabolismo , RNA Antissenso/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , RNA de Plantas/genética , RNA de Plantas/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
12.
Nat Genet ; 52(10): 1018-1023, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32989320

RESUMO

Potato (Solanum tuberosum L.) is the most important tuber crop worldwide. Efforts are underway to transform the crop from a clonally propagated tetraploid into a seed-propagated, inbred-line-based hybrid, but this process requires a better understanding of potato genome. Here, we report the 1.67-Gb haplotype-resolved assembly of a diploid potato, RH89-039-16, using a combination of multiple sequencing strategies, including circular consensus sequencing. Comparison of the two haplotypes revealed ~2.1% intragenomic diversity, including 22,134 predicted deleterious mutations in 10,642 annotated genes. In 20,583 pairs of allelic genes, 16.6% and 30.8% exhibited differential expression and methylation between alleles, respectively. Deleterious mutations and differentially expressed alleles were dispersed throughout both haplotypes, complicating strategies to eradicate deleterious alleles or stack beneficial alleles via meiotic recombination. This study offers a holistic view of the genome organization of a clonally propagated diploid species and provides insights into technological evolution in resolving complex genomes.


Assuntos
Genoma de Planta/genética , Haplótipos/genética , Anotação de Sequência Molecular , Solanum tuberosum/genética , Alelos , Diploide , Heterozigoto , Tetraploidia
13.
Nat Plants ; 6(2): 55-66, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32042154

RESUMO

Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.


Assuntos
Sequestro de Carbono , Carbono/metabolismo , Produção Agrícola/métodos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento
15.
Curr Biol ; 29(7): 1178-1186.e6, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905604

RESUMO

Potato plants form tuberous storage organs on underground modified stems called stolons. Tubers are rich in starch, proteins, and other important nutrients, making potato one of the most important staple food crops. The timing of tuber development in wild potato is regulated by day length through a mechanism that is closely related to floral transition [1, 2]. Tuberization is also known to be regulated by the availability of assimilates, in particular sucrose, the transported form of sugar, required for starch synthesis. During the onset of tuber development, the mode of sucrose unloading switches from apoplastic to symplastic [3]. Here, we show that this switch may be mediated by the interaction between the tuberization-specific FT homolog StSP6A and the sucrose efflux transporter StSWEET11 [4]. The binding of StSP6A to StSWEET11 blocked the leakage of sucrose to the apoplast, and is therefore likely to promote symplastic sucrose transport. The direct physical interaction between StSWEET11 and StSP6A proteins represents a link between the sugar and photoperiodic pathways for the regulation of potato tuber formation. Our data suggest that a previously undiscovered function for the FT family of proteins extends their role as mobile signals to mediators of source-sink partitioning, opening the possibility for modifying source-sink interactions.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Solanum tuberosum/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Amido/metabolismo , Fatores de Transcrição/metabolismo
16.
J Exp Bot ; 70(3): 937-948, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30481308

RESUMO

Potato (Solanum tuberosum L.) can reproduce sexually through flowering and asexually through tuberization. While tuberization has been thoroughly studied, little research has been done on potato flowering. Flower bud development in the strictly short-day tuberizing S. tuberosum group Andigena is impaired under short-day conditions. This impaired development may indicate that tuberization negatively influences flowering. Here, we determine how tuberization affects flower bud development. To find out whether the absence of tubers improves flowering, we prevented tuberization by: (i) grafting potato scions onto wild potato rootstocks, which were unable to form tubers; (ii) removing stolons, the underground structures on which tubers form; and (iii) using plants that were silenced in the tuberization signal StSP6A. Additionally, transgenic plants with increased StSP6A expression were used to determine if flower bud development was impaired. The absence of a tuber sink alone did not accelerate flower bud development, nor did it allow more plants to reach anthesis (open flowering stage) or have more open flowers. Interestingly, reducing StSP6A expression improved flower bud development, and increasing expression impaired it. Our results show that flower bud development in potato is repressed by the tuberization signal StSP6A, and not by competition with the underground tuber sink.


Assuntos
Flores/crescimento & desenvolvimento , Expressão Gênica , Proteínas de Plantas/genética , Solanum tuberosum/genética , Flores/genética , Fotoperíodo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento
17.
Physiol Plant ; 167(2): 250-263, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30478903

RESUMO

In the obligate short-day potato Solanum tuberosum group Andigena (Solanum andigena), short days, or actually long nights, induce tuberization. Applying a night break in the middle of this long night represses tuberization. However, it is not yet understood how this repression takes place. We suggest a coincidence model, similar to the model explaining photoperiodic flowering in Arabidopsis. We hypothesize that potato CONSTANS (StCOL1), expressed in the night of a short day, is stabilized by the light of the night break. This allows for StCOL1 to repress tuberization through induction of StSP5G, which represses the tuberization signal StSP6A. We grew S. andigena plants in short days, with night breaks applied at different time points during the dark period, either coinciding with StCOL1 expression or not. StCOL1 protein presence, StCOL1 expression and expression of downstream targets StSP5G and StSP6A were measured during a 24-h time course. Our results show that a night break applied during peak StCOL1 expression is unable to delay tuberization, while coincidence with low or no StCOL1 expression leads to severely repressed tuberization. These results imply that coincidence between StCOL1 expression and light does not explain why a night break represses tuberization in short days. Furthermore, stable StCOL1 did not always induce StSP5G, and upregulated StSP5G did not always lead to fully repressed StSP6A. Our findings suggest there is a yet unknown level of control between StCOL1, StSP5G and StSP6A expression, which determines whether a plant tuberizes.


Assuntos
Regulação da Expressão Gênica de Plantas , Solanum tuberosum/genética , Fatores de Transcrição/metabolismo , Luz , Modelos Biológicos , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/fisiologia , Tubérculos/efeitos da radiação , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/fisiologia , Solanum tuberosum/efeitos da radiação , Fatores de Transcrição/genética , Regulação para Cima
18.
BMC Genomics ; 16: 374, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25958312

RESUMO

BACKGROUND: In flowering plants it has been shown that de novo genome assemblies of different species and genera show a significant drop in the proportion of alignable sequence. Within a plant species, however, it is assumed that different haplotypes of the same chromosome align well. In this paper we have compared three de novo assemblies of potato chromosome 5 and report on the sequence variation and the proportion of sequence that can be aligned. RESULTS: For the diploid potato clone RH89-039-16 (RH) we produced two linkage phase controlled and haplotype-specific assemblies of chromosome 5 based on BAC-by-BAC sequencing, which were aligned to each other and compared to the 52 Mb chromosome 5 reference sequence of the doubled monoploid clone DM 1-3 516 R44 (DM). We identified 17.0 Mb of non-redundant sequence scaffolds derived from euchromatic regions of RH and 38.4 Mb from the pericentromeric heterochromatin. For 32.7 Mb of the RH sequences the correct position and order on chromosome 5 was determined, using genetic markers, fluorescence in situ hybridisation and alignment to the DM reference genome. This ordered fraction of the RH sequences is situated in the euchromatic arms and in the heterochromatin borders. In the euchromatic regions, the sequence collinearity between the three chromosomal homologs is good, but interruption of collinearity occurs at nine gene clusters. Towards and into the heterochromatin borders, absence of collinearity due to structural variation was more extensive and was caused by hemizygous and poorly aligning regions of up to 450 kb in length. In the most central heterochromatin, a total of 22.7 Mb sequence from both RH haplotypes remained unordered. These RH sequences have very few syntenic regions and represent a non-alignable region between the RH and DM heterochromatin haplotypes of chromosome 5. CONCLUSIONS: Our results show that among homologous potato chromosomes large regions are present with dramatic loss of sequence collinearity. This stresses the need for more de novo reference assemblies in order to capture genome diversity in this crop. The discovery of three highly diverged pericentric heterochromatin haplotypes within one species is a novelty in plant genome analysis. The possible origin and cytogenetic implication of this heterochromatin haplotype diversity are discussed.


Assuntos
Cromossomos de Plantas , Eucromatina/genética , Heterocromatina/genética , Solanum tuberosum/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Eucromatina/metabolismo , Ligação Genética , Genótipo , Haplótipos , Heterocromatina/metabolismo , Hibridização in Situ Fluorescente , Polimorfismo Genético
19.
Mol Genet Genomics ; 289(6): 1307-19, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25106953

RESUMO

One of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes. We also analysed various repeat elements that are unique to potato including the moderately repetitive P5 and REP2 elements, where the REP2 is part of a larger Gypsy-type LTR retrotransposon and cover most chromosome regions, with some brighter fluorescing spots in the heterochromatin. The most abundant tandem repeat is the potato genomic repeat 1 that covers subtelomeric regions of most chromosome arms. Extensive multiple alignments of these repetitive sequences in the assembled RH89-039-16 potato BACs and the draft assembly of the DM1-3 516 R44 genome shed light on the conservation of these repeats within the potato genome. The consensus sequences thus obtained revealed the native complete transposable elements from which they were derived.


Assuntos
Cromossomos de Plantas , DNA de Plantas/química , Genoma de Planta , Solanum tuberosum/genética , Sequência de Bases , Sequência Consenso , Mapeamento Físico do Cromossomo , Sequências Repetitivas de Ácido Nucleico , Retroelementos , Sequências de Repetição em Tandem
20.
G3 (Bethesda) ; 3(11): 2031-47, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24062527

RESUMO

The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker-based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal "pseudomolecules".


Assuntos
Mapeamento Cromossômico/normas , Cromossomos de Plantas/genética , Solanum tuberosum/genética , Biomarcadores/metabolismo , Cromossomos de Plantas/metabolismo , Genoma de Planta , Internet , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA